Científicos del Barcelona Supercomputing Center–Centro Nacional de Supercomputación (BSC-CNS) han añadido una nueva función a una proteína, mediante métodos computacionales, que le otorga la capacidad de degradar los microplásticos de las botellas y así facilitar su reciclaje.
El estudio supone un avance en la lucha contra el plástico.
Cada año se producen cerca de 400 millones de toneladas de plásticos en el mundo, una cifra que aumenta alrededor de un 4 por ciento anualmente.
Las emisiones que resultan de su fabricación son uno de los elementos que contribuyen al cambio climático y su presencia en los ecosistemas conlleva graves problemas ecológicos.
Uno de los más empleados es el PET (tereftalato de polietileno), presente en muchos envases y en botellas de bebida, y que con el tiempo se va desgastando formando partículas cada vez más pequeñas -los llamados microplásticos-, lo que agrava los problemas medioambientales.
Sigue leyendo: Alertan en campaña sobre daños por microplásticos en agua embotellada y leche materna
El PET supone ya más del 10 por ciento de la producción global de plásticos, con un nivel de reciclaje escaso y poco eficiente.
En este nuevo estudio, los investigadores desarrollaron unas proteínas artificiales capaces de degradar microplásticos y nanoplásticos de PET y reducirlos a sus componentes esenciales, lo que permitiría su descomposición o su reciclaje.
Para ello han usado una proteína de defensa de la anémona de fresa (Actinia fragacea, en su nombre científico), a la que le han añadido la nueva función tras un diseño mediante métodos computacionales.
"Es algo así como añadirle brazos a una persona", ha detallado el investigador Víctor Guallar.
Lee: Encuentran por primera vez microplásticos en el torrente sanguíneo humano
Esos brazos consisten en tres aminoácidos que funcionan como tijeras capaces de cortar pequeñas partículas de PET.
La proteína artificial funciona en la naturaleza "como un taladro celular, abriendo poros y actuando como mecanismo de defensa", ha explicado el investigador.
El aprendizaje automático de la inteligencia artificial y los superordenadores como el MareNostrum 4 del BSC que se han usado en esta ingeniería de proteínas permiten "predecir dónde se van a unir las partículas y dónde se deben colocar los nuevos aminoácidos para que puedan ejercer su acción", ha detallado Guallar.
Los resultados indican que la nueva proteína es capaz de degradar micro y nanoplásticos de PET con "una eficacia entre 5 y 10 veces superior a la de las PETasas (encimas capaces de degradar este plástico) actualmente en el mercado y a temperatura ambiente", ha asegurado el investigador.
También te puede interesar: Hoola One, la aspiradora que limpia microplásticos de las playas
Edición Astrid Sánchez
El presidente de EU mencionó el pasado martes que le gustaría ser pontífice de la Iglesia Católica
La Jornada
En el mes de marzo, dicho producto se cotizó 60.4 por ciento más caro que un año atrás
Afp
La política incluye tratar a los 'cárteles' como ''organizaciones terroristas'' parar imputar cargos más severos
La Jornada
El consenso casi unánime entre las encuestas es que Albanese ganaría para un segundo mandato
Afp